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An Adaptive Algorithm for Antenna Array Low-
Rank Processing in Cellular TDMA Base Stations

Massimiliano (Max) Martone,Member, IEEE

Abstract—A new adaptive algorithm for blind interference
rejection and multipath mitigation is studied and applied to
antenna array processing in the reverse channel of a time-
division multiple-access (TDMA) cellular communication system.
The method is based on higher order statistics (HOS) processing
of the baseband vector samples at the antenna array output. The
similarity between the cumulant-based solution and the standard
multivariable least-squares solution is exploited to derive an
efficient adaptive algorithm based on a low-rank processing
architecture. The algorithm exhibits good tracking and enhanced
identification capability with respect to traditional least-squares
methods.

Index Terms—Array signal processing, higher order statistics,
interference suppression, land mobile radio cellular systems,
time-division multiaccess.

I. INTRODUCTION

I N TIME-DIVISION multiple-access (TDMA) systems, data
dispersion can span several symbols as a consequence of

frequency-selective fading caused by radio-frequency (RF)
multipath propagation. In addition, propagation characteristics
may change in time due to the motion of the transmitter.
The received signal is composed of the original plus several
delayed attenuated replicas, and each replica reaches the
antenna with different attenuation and angle of arrival. Space-
only processing methods [28], [29] are not effective because
intersymbol interference (ISI) cannot be compensated for using
the traditional combining architecture. A careful combina-
tion of space and time filtering may result in an extremely
efficient approach to solve ISI caused by multipath fading
and interference caused by multiple cochannel transmitters.
The space-time filtering approach results in a discrete-time
multiple-input multiple-output (MIMO) model that must be
deconvolved. Standard techniques for equalization are based
on an equivalent minimum phase system modeling approach
because they exploit only the second-order statistics (SOS) of
the signal (the minimum mean-square error (MMSE) criterion,
for example). However, most real-world channels do not
present the minimum phase (MP) condition. Motivated by
these observations, the equalization of nonmnimum phase
(NMP) channels using higher than second-order statistics

Paper approved by S. Ariyavisitakul, the Editor for Wireless Techniques and
Fading of the IEEE Communications Society. Manuscript received March 3,
1997; revised September 15, 1997 and December 1, 1997. This paper was
presented in part at the IEEE International Conference on Communications,
Montreal, P.Q., Canada, June 1997.

The author is with the Telecommunications Group, Watkins-Johnson Com-
pany, Gaithersburg, MD 20878-1794 USA (e-mail: max.martone@wj. com).

Publisher Item Identifier S 0090-6778(98)03868-9.

(HOS) has stimulated significant interest during the last ten
years [22], [17], [14], [8], [25], [19]. Most works describing
HOS-based algorithms, however, were never applied to real-
istic environments so that eventual advantages of these ideas
in the solution of practical problems is not clear. The only
blind algorithm well studied in its practical implementation
[15] is the constant modulus algorithm (CMA) whose slow
convergence under particular situations constitutes the most
important objection.

The method proposed in this paper is based on the same
idea introduced in [13], where the super-exponential algorithm
of [21] was generalized to the multichannel case using third-
order cumulants. Here we present the application of the
method to the reception of cellular signals using fourth-order
cumulants and a new adaptive implementation based on a low-
rank processing concept. Low-rank/subspace processing is an
extremely important branch of signal processing (see [20] for
applications and algorithms). The space/time autocorrelation
matrix of signals received at different elements of an array can
be ill-conditioned in practice. Any adaptive algorithm based
on full-rank processing (for example, traditional recursive
least-squares (RLS), [7], [5]) is severly affected by the rank
degeneracy problem. We propose here an adaptive algorithm
based on a low-rank approximation of the covariance matrix
exploiting some important ideas presented by Strobach in [24].

The paper is organized as follows. In Section II we describe
the system model for the propagation channel and the discrete-
time model. In Section III the set of equations necessary to
solve the deconvolution problem is derived. In Section IV the
adaptive implementation is described, while in Section V the
result of computer simulations are shown.

II. SYSTEM MODEL

We assume mobile transmitters communicating with a
base station with a -element antenna, with . The
structure of the antenna is assumed to be a uniform linear
array, is the distance between adjacent antenna elements, and

is the wavelength of the signal. Multipath propagation can
be characterized for the-transmitter as an -path channel
whose th path is represented by
received delayed and attenuated replicas of the signal. The
impulse response of theth path relative to theth transmitter
can be expressed as
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where , , and are delay, amplitude, and phase
of the th delayed signal in the th path relative to the
th transmitter, while is the delta function.1 Here we

are assuming a time-invariant channel, whereas, ,
and are time-varying parameters. The assumption is
justified in many applications of interest, since the observation
interval is often much shorter than the coherence time of the
channel which characterizes the time-variant behavior of the
propagation media. However, the adaptive scheme described
in Section IV is designed for time-variant channels. The
complex baseband-modulated signal of theth transmitter is

, where are
the complex symbols defining the signal constellation used for
the particular digital modulation scheme,2 is a square-
root raised-cosine shaping filter with rolloff factor 0.35, and
is the signaling interval. Theth transmitted signal propagated
through the th path can be represented as

(1)

where is the carrier frequency. The contribution of
the th transmitted signal propagated through theth path with

angle of arrival (DOA) and phase difference
from the first antenna element to theth element can be written
(we are neglecting the additive noise) as

where . Sampling at symbol rate ,
we can compact the effect of the RF propagation channels at
the input of the digital filters at baseband as

(2)

1In this model the�th path for thelth transmitter consists ofP (l)
� delayed

replicas of the signal with the same angle of arrival due to the scatterers nearby
the mobile. In fact, assuming the scatterers evenly spread out on a circle
surrounding each mobile, and assuming large distance between the mobile
and the base station, simple geometric considerations [1] can lead to the
simplification of apoint-source approximationfor the scattering mechanism
local to the the mobile; that is, we can assume thatP

(l)
� delayed replicas of the

signal are received with approximately the same angle of arrival. For a certain
numberN (l) of reflections of thelth transmitted signal, particularly reflections
in the vicinity of the base station, these assumptions are not reasonable and
different angles of arrival have to be considered.

2In �=4 DQPSK [26], [27] we have~a(l)m = ~a
(l)
m�1 cos[��

(l)
m ] �

~b
(l)
m�1 sin[��

(l)
m ]; ~b

(l)
m = ~a

(l)
m�1 sin[��

(l)
m ] + ~b

(l)
m�1 cos[��

(l)
m ], where

��
(l)
m = �=4 if bit(l)1;m = 0 andbit(l)2;m = 0; ��

(l)
m = 3�=4 if bit(l)1;m = 1

and bit
(l)
2;m = 0; ��m = �3�=4 if bit

(l)
1;m = 1 and bit

(l)
2;m = 1; and

��m = ��=4 if bit(l)1;m = 0 andbit(l)2;m = 1.

where is Gaussian white noise and is the -
sampled3 impulse response

(3)

In this expression is the raised-cosine function with
excess bandwidth 0.35 [18] obtained because we assume that
the receiver filters at each antenna element are square-
root raised-cosine filters perfectly matched to the transmitter
filters . In the following derivation vectors and matrices
are bold. , , , and designate transposition and
Hermitian for matrix and vector , respectively. Complex
conjugation for scalars, matrices, and vectors is indicated as

, , and , respectively, while notations and
stand for the element of matrix and the th

element of vector , respectively. We use the notation

for the two-norm of the complex -vector

, and for
the Frobenius norm of the complex matrix whose
generic element is .

We will not consider the contribution of the additive noise in
the derivation of the deconvolution algorithm. In the-domain
the transfer function (2) can be expressed as

(4)

where the organization of the polynomials [ -
transforms of ] in is given by

A. Distortionless Reception

To recover the input signals, a linear-input -output filter
with length is

applied to the outputs of the sensors. The objective for
is to achievedistortionless reception.
If we define

distortionless receptionmeans that

(5)

where is a identity matrix [9], [4]. The system
is required to be bounded-input bounded-output (BIBO) stable.
The solution (5) is achievable only ideally. Since the input
signal constellations are symmetric, the statistics of the input
signals reflect the same symmetry. Moreover,signal

3The same model with some marginal changes applies to the fractional
sampling case as well. We restrict, however, the description of the algorithm
to the symbol-spaced case for the sake of clarity.



MARTONE: CELLULAR TDMA BASE STATIONS 629

reconstruction is possible only up to a constant delay, due to
the stationarity of the input process. The recovered signals will
be subject to a phase ambiguity, a delay, and a permutation
ambiguity. The best possible result for practicaldistortionless
receptionby means of a linear filter is

(6)

where is a permutation matrix and

where is an integer for
[25], [10], [11]. We say that satisfies thedistortionless
receptioncondition if there exists a BIBO stabledistortionless
receptionfilter . A system satisfies the distortion-
less reception condition if and only if [10], [11]

for all (7)

B. Vector Organization of Impulse Responses

In the time domain the linear filter can be written

(8)

where is the filter corresponding to the polynomial
and is the th output of the deconvolution filter

. The overall impulse response is characterized by the
input/output relation

(9)

The impulse response of the two cascaded filters is given by
the multivariate convolution

where

and In a
vector form we can write

(10)

where , , and are defined as

...
...

...

The desired response that completely restores the informa-
tion signal of the th transmitter up to the delay can be
expressed as

(11)

where

(12)

The generic th element of the vector is , if we
neglect the phase shift and we force the solution not to permute
the inputs .4 This generalizes the one-dimensional
case [21]. It is possible to solve this deconvolution problem
by solving the minimization problem

(13)

In the following sections we will solve the problem of finding
the filter that restores only theth transmitted digital
stream, which is the signal of interest. That is why we omit
the notation in the following expressions.

C. Key Assumptions and Their Justification

We make now the important assumptions on the discrete-
time model described and we detail some requirements on
the statistical properties of the input symbols distribution.
The HOS properties of a process are commonly described
in the time domain by cumulants. Cumulants of interest here
are fourth-order cumulants of complex zero-mean stationary
processes [14]. The properties of cumulants that we exploit
are:

• LIN: ;
• STATIND: if the samples of a process can be divided into

two (or more) statistically independent subsets, then their
joint cumulants are zero.

It is also well known that if the process samples are jointly
Gaussian, then their jointth-order cumulant is zero for .

The fundamental assumptions necessary to develop the
algorithm are:

• AS1: is irreducible and only for
with full rank;

• AS2: the complex sequence is constituted by ran-
dom variables identically non-Gaussian-distributed and
statistically independent, and the cumulants of
satisfy:

•
• , only for
• , for

any
•

, only for

4In practice the permutation ambiguity is not a problem because it can be
solved by a user identification matching procedure. Specifically, in [26] and
[27] the coded digital verification color code (CDVCC) section of the frame
is intended to be used for this purpose.
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Assumption AS1 is required to ensure thedistortionless
receptioncondition for . In fact, underAS1 it is possible
to design a deconvolution filter with length

such that thegeneralized Sylvester
matrix H of the MIMO system is full column rank [9],
[4]. This implies that: 1) adistortionless receptionlinear
filter exists (i.e., satisfies thedistortionless reception
condition) and 2) (7) is verified. AssumptionAS2 requires
the same zero-lag fourth-order cumulant and variance for the

modulated signal sources . Since the signals are
assumed to use the same modulation scheme, this appears
reasonable. However, a generalization of the algorithm
to the case of different zero-lag fourth-order cumulants
and variances is possible. In practical applications when

is a time-varying response, it is almost impossible
to guarantee at any time instant the existence of the full-
rank least-squares solution of (13).5 In fact, even if some
propagation parameters may be considered almost time-
invariant (for example, delay spread or maximum Doppler
shift), the characteristics of the different multipath channels
are independently changing in time and it is, in general,
quite unrealistic to make such a strong assumption. The
well-known remedy to rank-deficient (or ill-conditioned)
least-squares problems is the use of a minimum-norm
solution of (13) based on a low-rank approximation of the
Hermitian matrix , which is obtained using a dominant
eigendecomposition.6 This idea will be later developed
in an adaptive algorithm based on a subspace tracking
concept.The low-rank approximation can also be motivated
by computational efficiency as it will be clear in Section IV.
The eigenvalue decomposition of is ,
where is the orthonormal
matrix of eigenvectors, and
is the diagonal matrix of eigenvalues. The dominant
eigenvalues are those eigenvalues that exceed a certain
predetermined tolerance level . Hence, using the notation

, we

can write and . In

practice one has to find a sufficiently large integersuch
that exists. Next we define the Moore–Penrose inverse

so that we can solve the least-squares
problem (13) as

(14)

5We are trying to point out that the Hermitian matrix~HH ~H may be not
only singular but alsoclose to singular—that happens when~H is nearly
rank-deficient; in other words, the least-squares problem (13) isill conditioned.

6It is interesting to observe that this modification to the super-exponential
algorithm was proposed independently by Ding in [6], where it was shown
that the length and zero conditionin addition to the low-rank modification
results in a globally convergent algorithm. Observe that the case treated in
[6] is the single-input multiple-output (SIMO) case, and that we are instead
treating the more general MIMO case—in fact, thelength and zero condition
translates intoAS1. It is also important to note that [6] does not address the
problem of extreme practical interest of designing an adaptive algorithm to
implement the batch low-rank super-exponential procedure. This is exactly
the problem we are going to solve in the following sections.

III. D ERIVATION OF THE ALGORITHM

The following two-step iterative procedure defines a class
of algorithms for different values of and [21], [13]:

(15)

(16)

where and stand for the result of the first and
second step, respectively. This iterative algorithm converges
at a “super-exponential” rate to the desired solution [21]
for . In this work we choose

, which gives a solution in terms of fourth-order cumu-
lants. Since obviously is not available (because is
not known), we derive a procedure [13] in terms of .
If we define , with

as the impulse response
vector obtained by , we can state the
least-squares minimization problem

(17)

whose solution is

(18)

To obtain normalization (16), the second step is

(19)

It should be evident that the solution of the least-squares
problem (17) [given by (18)] and subsequent normalization
as in (19) is equivalent to one step of the iterative procedure
(15), (16). Since (15) and (16) converge to the desired solution
(11), (12) expressed in terms of in (13), it is also true that
at the point of convergence the solution of (17) is equivalent to
the solution of (13). A discussion on the convergence of (18)
and (19), related to the convergence of (15) and (16), is given
in the Appendix. The procedure (18), (19) can be expressed
in terms of the cumulants of the outputs of the sensors. From

, we exploit
AS2 and the properties of the cumulants of linear stationary
processes (see property LIN) so that we can write

(20)
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due to

otherwise.

To derive the second key expression related to the solution
(18), let us consider

and7

So we can write

(21)

Expressions (20) and (21) can be substituted in the least-
squares solution (18) and the following iterative algorithm is
obtained:

(22)

where the matrix with dimensions is given by

...
...

...
...

(23)

(24)

7Due toAS2

cum xj (n�m1); xj (n�m2); x
�

j (n�m3); x
�

j (n� k)

=
4x; j1 = j2 = j3 = j; m1 = m2 = m3 = k

0; otherwise.

and the vector of fourth-order cumulants is given
by

(25)

(26)

IV. A DAPTIVE LOW-RANK PROCESSING

In this section we derive an adaptive algorithm for online
computation of the multichannel deconvolution filter param-
eters. The cumulants of interest in the algorithm can be
estimated as

(27)

(28)

where we have neglected indexes for for simplicity,
and we have indicated the estimated cumulant as . At
the end of the convergence process

must be satisfied. We assume that the power constraint (19)
is always satisfied using an automatic gain control (AGC).
Clearly at each stage we wish to solve the problem

(29)

with , ,

,
, and

. In fact, the normal equationsdefine the
desired minimizer as ,
which is equivalent to for and if we
employ sample statistics estimators for the cumulants and the
covariance matrix. The expression for can be justified
by considering the estimation of fourth-order cumulants based
on the sample average given by (28) andAS2 (the third term
on the right-hand side of (28) needs not to be estimated since

, seeAS2).
Moreover, due to the power normalization (19)
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Observe that the expression (29) reveals the similarity with
the RLS problem where the process is the desired
signal. The adaptive solution of the problem could be derived
using the RLS algorithm or its variations [7], [5], [18]. One
of the important drawbacks of full-rank RLS is that this
approach requires at every step, explicitly or implicitly, the
existence of the inverse . This cannot
realistically be guaranteed in any practical situation and, in
particular, in space/time applications. In fact, the multipath
channels follow independent time-varying characteristics so
that the data matrix may become ill conditioned due
to statistical fluctuation of the received signals. The most
immediate consequence is that rank degeneracy appears in the
least-squares problem (29), which makes the results of any
traditional numerical algorithm based on full-rank processing
meaningless. In this case one should detect the rank degener-
acy by looking at the singular values of and decide that
certain columns of this matrix can be ignored. In particular, the

eigenvectors of (the left singular vectors
of ) corresponding to the “small” singular values can
be ignored in a minimum-norm solution of the least-squares
problem (29).

The eigenvalue decomposition of is

(30)

where is the
orthonormal matrix of eigenvectors, and

is the diagonal matrix of
eigenvalues. The dominant eigenvalues are those eigenvalues
that exceed a certain predetermined tolerance level related
to the numerical accuracy of the computing device we are
using and to the additive noise power. We use the notation

, so

that we can define the generalized inverse

(31)

and the low-rank solution of (29)

(32)

The low-rank in-space vectorand residual vectorare defined,
respectively, as

(33)

(34)

A. Numerical Procedure to Adaptively Obtain (32)

It is possible to show [24], [7] that if we define
, then an iterative procedure to find anap-

proximateeigendecomposition of (considered as a time-
invariant matrix) is:

• ;
• : square-root decomposition

( is constituted by orthonormal columns; is
upper triangular).

that is

This is known as simultaneous orthogonal iteration [23].
Strobach [24] and Owsley [16] observed that this iteration can
be applied also when is slowly varying. The recursive
estimation of is

(35)

(36)

where is a parameter close to one that accounts for some
exponential weighting [7]. In addition, using the simultaneous
orthogonal iteration method and substituting the iteration index

with the time-step index , it is possible to approximate (31)
as

(37)

The estimate of the filter weights at time stepis so obtained
as

(38)

It was shown in [24] that the update on matrix can be
performed as

(39)

The in-space component, obtainedpinning the in-space vector,
is

(40)

while the residual component, obtainedpinning the residual
vector, is

Expressions (38)–(40) are at the basis of LORAF1 of [24]
as modified for complex signals and applied to our blind
deconvolution problem. The algorithm is reported in Table
I. The QR decomposition required at every step can be
efficiently performed using Jacobi rotations [7]. Observe that

is not explicitly computed. Some
important refinements of this basic algorithm can be made
to improve computational efficiency. Particularly, the explicit
updating of the QR decomposition of can be eliminated
in a scheme which directly tracks the and the factors
as new data snapshots are received. This method requires

Givens rotations per update and is formalized
in the algorithm LORAF2 (see [24] for details). Further
simplifications can be used to reduce the number of Givens
rotations to and obtain the ultrafast subspace tracking
scheme defined by LORAF3 in [24]. The algorithm modified
for our problem is reported in Table II. The matrix
is a Givens rotation matrix [7] that sweeps the last row of
the matrix it premultiplies. The structure of the problem (29)
may even suggest the use of a square-root-type algorithm for
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TABLE I
LORAF1–HOS ALGORITHM

subspace tracking—this approach would have the immediate
advantage of reducing the required dynamic range of the
triangular factor .

B. Adaptive Dominant Space Order Estimation

The order of the dominant space can be estimated using
a threshold level which, added to the estimated noise
floor (of the additive white Gaussian noise), will help to
discriminate the relevant eigenvectors. The subspace section of
the algorithm is operated with the orderequal to . This
maximum subspace order is experimentally determined
so that the rank of the autocovariance matrix statistically
never exceeds this parameter. A possible adaptive noise power
estimator is

with

Only the eigenvectors corresponding to the eigenvalues that
exceed are used in the computation of the
filter and as a consequence in signal reconstruction.
Observe that the eigenvalues (actually their approximation)
are obtained by extracting the diagonal elements of the upper
triangular matrix (which is analmost diagonalmatrix).
The experimental results of the next section do not make use,
however, of the adaptive space order estimation.8 The order

is actually experimentally determined offline for a
certain propagation scenario as a tradeoff between error rate
performance and computational complexity.

C. Remarks on Implementation

The simulations in the following section are performed us-
ing a word length size of 24 bits, using fixed-point arithmetic.

8There is marginal performance improvement if real-time estimation and
tracking ofr is performed in the fixed number of mobile transmitters scenario,
which is the case that we simulated. Adaptive order estimation becomes in-
dispensable when the number of transmittersU varies dynamically—the rank
properties of the space–time autocorrelation matrix may change dramatically
in this case.

TABLE II
LORAF3–HOS ALGORITHM. THE MATRIXG(n) IS A GIVENS ROTATION MATRIX

TABLE III
COMPUTATIONAL COMPLEXITY ANALYSIS WITH K ELEMENTS,

L TAPS, AND RANK APPROXIMATION EQUAL TO r

The computational complexity in terms of multiplications and
elementary complex 2 2 Givens rotation per update was
calculated and compared to the complexity of the adaptive
QR-RLS [7]. The approximate number of computations per
iteration using filters length equal to and sensors is given
in Table III.
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(a)

(b)

Fig. 1. The LORAF1-HOS algorithm. Computational complexity per update
of LORAF3-HOS and QR-RLS in terms of multiplications and versus
the subspace order retained in the adaptive algorithm. (a) Computational
complexity versus rank reduction (a)L = 9;K = 5 and (b)L = 9;K = 2.

It is evident that the LORAF3-HOS algorithm here proposed
becomes convenient in terms of computational complexity
with respect to the QR-RLS scheme if the orderof the
dominant space remains below a certain value—in Fig. 1 for

and and , the number of multiplications
required by the two algorithms is computed and plotted versus
the order . LORAF3-HOS is convenient for for
and for for .

V. RESULTS OF EXPERIMENTS

A TDMA system for cellular communications has been
simulated according to [26] and [27]. In addition, we present
the results of some lab experiments performed using the
Watkins–Johnson wide-band dual-mode (AMPS and IS-136)

Fig. 2. Block diagram of the receiver.

base-station system . The main purpose of experimenting
the algorithm with data samples collected from hardware
equipment is to demonstrate practical applicability of the ideas
presented. A block diagram of the receiver section of the
base station is shown in Fig. 2. The tuner module performs
a standard single conversion scheme. The analog-to-digital
(A/D) is a high-speed bandpass sampler, while the conversion
at baseband is operated by digital downconverters (wide-band
processing). The slots are 162 symbols long, and 14 symbols
at the beginning of each slot are known at the receiver.9 It is
obvious that no blind algorithm can achieve convergence in 14
symbols. The scheme we propose is a hybrid scheme which
during training performs low-rank least-squares filtering, while
after convergence runs in blind mode as described previously.
The difference is only in the desired signal that is fed back
to the adaptive algorithm. During training the desired signal
is instead of , where is the training
sequence, that is

training
blind.

(41)

The mean-squared error (MSE) is defined as the average
of the squared error obtained over Monte Carlo

runs and is given by . The error

obtained at the th run is ,
where is the delay introduced by the filters and
is the output of the combined filters relative to theth
transmitter obtained at theth run. Observe that the initial
training with known symbols associated with the user ID
matching procedure solves the sources permutation ambiguity
and the phase uncertainty. Of particular importance is the fact

9This corresponds to a frame format similar to the DTC of [26] and [27].
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TABLE IV
CHANNEL PROPAGATION ENVIRONMENTS FORPERFORMANCE EVALUATION RESULTS: DOA’s AND DELAY

SPREADS OF THEMOBILES. IN ALL CASES�
(1)
1;1 = �

(1)
2;1 = �

(2)
1;1 = �

(2)
2;1 = �

(3)
1;1 = �

(3)
2;1 = 0

TABLE V
CHANNEL PROPAGATION ENVIRONMENTS FORPERFORMANCE EVALUATION RESULTS: VELOCITY OF THE MOBILES

that we always compare the proposed approach LORAF3-
HOS with a more traditional QR-RLS approach, explicitly a
second-order-statistics-based method. The QR-RLS uses the
synchronization sequences while in training and past decisions
while in decision-directed mode.

A. Computer Simulations Results

In the simulations we assumed a sensor spacing of. The
number of elements and transmitters for each figure is specified
in Table IV. One of the transmitters is at array broadside and
is the signal of interest. We assume a two-path model, and
each path impulse response is modeled as a two-ray Rayleigh-
fading channel ( ) [26], [27]. The arrival angles
of the paths are spread around 0with a cluster width of 2.
The interfering signals are generated with the same parameters
but with DOA’s clustered around and , as indicated
in Table IV. In Fig. 3 the equivalent baseband discrete-time
model is shown relative to theth mobile transmitter. Delay

spread propagation parameters are summarized in Table IV as
they relate to the test cases reported in the figures. Observe
that the symbol period is 41.2s and that in the described
model s.
The Doppler frequency usually describes the second-order
statistics of channel variations. Doppler frequency is related
through wavelength to the th mobile transmitter velocity

expressed in km/h. The model used in this case is based
on the wide sense stationary uncorrelated scattering (WSSUS)
assumption [3]. The complex weights are generated as filtered
Gaussian processes fully specified by the scattering function.
Particularly, each process has a frequency response equal to
the square root of the Doppler power density spectrum.10 Table
V summarizes the Doppler frequency situation as related to the
test cases’ results shown in the figures. The SNR

10The Doppler spectrum is approximated by rational filtered processes. The
filters are described by their 3-dB bandwidth, which is called the normalized
Doppler frequency. The additional assumption is that all channels and complex
weights have the same Doppler spectrum.
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Fig. 3. Discrete-time model of the filtering section (K sensors) relative to theith transmitter. Observe that an adjacent interference-rejection filter is
concatenated with the (square-root) raised-cosine filter, which by itself does not meet the IS-136 specification in terms of out-of-band rejection.

for each discrete-time channel impulse response is defined
as in [2]. Fig. 4 shows an experiment where the filters are
running on experimental data (not formatted as in the IS-136
TDMA system) in blind adaption using LORAF1-HOS mode
for the entire sequence. The speed is relatively low but large
delay spread is present on the channel, while the cochannel
interference suppression capability of the method is evident
(the three signals are received with the same average power).
It is, however, also important to note that the experiment shows
the weakness of the algorithm—slow startup convergence.
Unfortunately, the filter reaches satisfactory MSE only after
hundreds of symbols. The solution to the slow startup problem
is, as already mentioned, training, according to the scheme
(41). Fig. 5 shows experiments (again with no relation to a
realistic TDMA frame) where we try to investigate the tracking
capability of the method. The plots show the trajectory of the
real part of the center tap11 as compared to the center tap of the
ideal distortionless reception filter (constrained to have finite
length), computed assuming perfect instantaneous knowledge

11In equalization literature thecenter tapis the tap that carries the maximum
energy.

of and shown as the dashed trace. The procedure we
used to compute the ideal optimum setting for was the
following:

1) freezetime evolution of the multipath channels param-
eters at time step ;

2) compute the discrete-time symbol-spaced channels
for using (3) and compact

into matrix as in (13), say ;
3) solve

using

Fig. 5(a)–(d) shows results for infinite SNR and low delay
spread of the interfering signals (see Table IV). Fig. 5(d) shows
the traces of the real part of two adjacent taps. Fig. 5(e) is for
root-mean-square (rms) delay spread of 20.6s for all signals
impinging over the array. Fig. 6 shows ideal experiments with
one single transmitter and periodic retraining with randomly
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Fig. 4. MSE versus time step for the three transmitters with blind adaption (using LORAF1-HOS) during the entire length of the transmitted sequence.
For propagation parameters, see Tables IV and V.

(a) (b) (c)

(d) (e)

Fig. 5. An experiment that shows the tracking capability of the algorithm LORAF3-HOS. The smooth dashed trace is the optimum Wiener filter solution,
computed assuming perfect knowledge of the discrete-time channel impulse response. For propagation parameters, see Tables IV and V. SNR is infinite.

generated inputs (not IS-136 frames). Each case depicts: 1) the
Rayleigh-fading amplitude evolution in time of the two-ray
Rayleigh-fading channel; 2) the real part of the center tap and

the theoretical behavior of the ideal distortionless reception
filter; and 3) the magnitude of the error for the single
transmitter. Several important comments are in order. Observe
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(a)

(b)

Fig. 6. For one single transmitter, plots of the two-ray Rayleigh-fading channel amplitudes, real part of the center tap of the filter for LORAF3-HOS versus
the optimum Wiener solution (dashed line), and magnitude of the error. The filter is periodically retrained as the MSE reaches a threshold. Evidently,fading
events of the first ray dramatically affect performance. For propagation parameters, see Tables IV and V.

that fades of the first ray below 10 dB dramatically impact
the performance of the adaptive algorithm. In some works
the concept of traditional equalizers (based on second-order
statistics) not able to identify nonminimum phase channels
was emphasized. Our results indicate that the use of HOS
cannot totally solve the problem because of the fast variations
of the parameters. The algorithm is extremely sensitive to
fades occurring on the first ray, or if the amplitude of the
second ray becomes larger than the first one. This problem
can be explained by the fact that as the first ray decreases

in amplitude, the center tap should move to an adjacent tap,
which is a configuration of the taps considerably different from
the original one (observe, in fact, the rapid changes in the real
part of the center tap in Fig. 6 in correspondence with a fade
of the first ray). The filter has to deconvolve a channel whose
spectral response has dramatically changed and it should be
repositioned in timewith respect to the maximum energy point
captured by the synchronizer. Since the synchronization point
is not changed dynamically within one slot, the filter is not
able to satisfactorily deconvolve the channel. The degradation
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(a)

(b)

Fig. 7. Stability experiments (a) for the two algorithms atSNR = 21 dB: QR-RLS and LORAF3-HOS at 100 km/h. The slot is 750 symbols (for testing
purposes only). Top: center coefficient after synchronization. Bottom: instantaneous magnitude of the error after synchronization. (b) The averaged MSE (100
Monte Carlo runs) is shown for real demodulation of IS-136 slots. For propagation parameters, see Tables IV and V.

could be probably reduced, increasing the time span of the
filter (larger ), or by introducing a feedback filtering section.
We reserve the investigation of this important topic to future
work. Fig. 7(b) shows the MSE averaged over 100 independent
computer runs versus time step in symbols for dB
for real IS-136 slots, while Fig. 7(a) is an experiment with a
750–symbol-long sequence andno retraining. It is shown how
the blind mode is more robust under fast fading than decision-
directed mode of traditional schemes such as the QR-RLS
algorithm. Bit-error rate (BER) analysis results are shown in
Fig. 8 (at different speeds) with delays as specified in Table IV.
BER is relative to the first mobile transmitter. Ideal frame and
symbol synchronization is assumed. The SNR is the same on
each discrete-time channel. The two cochannel interferers are
received at an average power 5 dB below the average power
of the first transmitter. A sample size of 10 was used to
estimate an error probability of 10. Note that for

, the computational complexity of LORAF3-HOS is

approximately four times the QR-RLS complexity; for
, it is about 1.5 times the QR-RLS complexity; and for

, it is about 20% less computationally intensive.
While we obtain improvement in all cases, the remarkable
result is that for , LORAF3-HOS gives for
an SNR-per-bit improvement of about 6 dB.

B. Hardware Implementation Results

A simpler and indeed more realistic scenario
12 was studied using data collected from the digital

signal processing (DSP) receiver section of , the dual-
mode wide-band base station implemented at Watkins-Johnson
Company. The hardware test setup is depicted in Fig. 9;
the propagation parameters are in Table IV. A hardware
multipath fading simulator is connected to the two antenna
ports of the base station. The IS-136 signal generator simulates
transmission of digital traffic channel (DTC) frames coming

12This testing environment is also specified in [26] and [27].
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Fig. 8. BER of the first mobile transmitter in a three-mobile environment. For propagation parameters, see Tables IV and V. Also, results for the
no-fading case are shown.

from three different mobiles. Additive Gaussian noise is in-
jected on both diversity channels. Observe that the DSP
modem receives a sampling rate of 80 kHz (not an integer
of the symbol rate). The wordlength used is 24 and the
algorithm has been implemented using simulated fixed-point
arithmetic.13 A polyphase raised-cosine filter concatenated
with an adjacent interference rejection filter transforms the
rate to kHz. Then the two-channel filter works
at rate. AGC is operated on a slot-by-slot basis. While
perfect synchronization was assumed in the previous simu-
lations, in the hardware experiments there is an open-loop
synchronizer14 choosing the optimum positioning of the filters
at rate. In addition, as required by the specification
[26], [27], there is carrier frequency offset between the lo-
cal oscillator and the transmitted carrier frequency of about
213 Hz. The adaptive filter is not able to track this large
frequency offset. Indeed, frequency offset is more conveniently
estimated using a second-order phase-locked loop (PLL) that
compensates for the frequency drift. A detailed description
of the synchronizer and the frequency offset compensator
is omitted because it is beyond the scope of this paper.
The results of extensive BER measurements are summarized
in Fig. 10. The improvement with respect to the QR-RLS

13A simulation analysis of the dynamic range required not to degrade the
performance of the algorithm as opposed to the floating point implementation
was carried out, although the description of such analysis is beyond the scope
of this paper. Different variables of the algorithm required different number
of fractional bits to avoid overflow. In particular, the matrix~R(n) required
double-precision representation.

14The basic strategy is to cross correlate the incoming signal with the
synchronization sequences adequately interpolated.

is not as impressive as in the previous experiments, where
multiple interference sources and a relatively large number
of sensors made tracking the optimum MMSE solution more
difficult. It is exactly in these circumstances that LORAF3-
HOS outperforms known solutions in terms of performance
and computational complexity. It is important to mention,
however, that substantial improvement in the two-antenna case
can be achieved using QR-based decision-feedback schemes
and similar extensions of the cumulant-based algorithm.

VI. CONCLUSION

We have studied a new practical solution to the array pro-
cessing problem in a cellular base station employing antenna
arrays. The method is based on a vector generalization [13] of
the idea presented in [21] and the low-rank adaptive processing
concept of [24]. The algorithm is sufficiently fast to track
channel variations caused by moving transmitters, while at
the same time being highly attractive from the computational
point of view, proving that the use of HOS does not necessarily
imply slow convergence and, hence, extremely large sample
size. Fast startup convergence is achieved by the use of training
sequences. The experimental investigation is of particular
interest because the applicability of the new method was
verified in a realistic environment specified by the current U.S.
standard for digital cellular communications [26], [27]. BER
results were shown using also data collected from hardware.

The algorithm LORAF3-HOS is perfectly adequate to track
channel variations due to Doppler shifts larger than 80 Hz more
efficiently than traditional decision-directed-based methods,
especially in multiple cochannel interference and fast-fading
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Fig. 9. Hardware test setup for laboratory experiments.

Fig. 10. BER for the hardware experiments. For propagation parameters, see Tables IV and V.

scenarios when using a relatively large number of sensors.
In these cases, tracking the optimum MMSE solution using
traditional methods such as RLS or its variations is not only
computationally intensive but also not satisfactory in terms
of performance, due to the rank degeneracy problem of the
space–time correlation matrix. The best known method for
RLS filtering in terms of numerical properties, the QR-RLS
was compared to the proposed algorithm, LORAF3-HOS. The

remarkable result is that at , the improvement of
LORAF3-HOS in SNR per bit with respect to the traditional
decision-directed QR-RLS is about 6 dB, using same length
of the filters and same number of sensors. Moreover, only
80% of the computational complexity per update of the full-
rank QR-RLS is required to obtain such improvement. The
computational complexity reduction that one can obtain with
the low-rank tracking idea is very attractive; in fact, it is pos-
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sible to obtain satisfactory BER results (compliant with [26]
and [27]) using less than 60% of the QR-RLS computational
complexity.

APPENDIX

ON THE CONVERGENCE OF THEALGORITHM

The iterative procedure (15) and (16) applied to the vector
maintains the index of the tap with largest magnitude,

which was called in [21] theleading tap(see for details [21,
Sec. III]). From with elements , we want to achieve
convergence after iterations to with elements that
are nonzero only for a specific and . While
there is no specific requirement on (which will result in an
arbitrary delay) it is evident that it must hold to restore
the information of the th transmitter and not an arbitrary

th transmitter. Although this problem in our algorithm has
been solved by use of training sequences, the convergence to
the th transmitter can be ensured if the leading tap ofis
contained in the vector , that is, if is
verified for some , all , and any . This situation is
always verified as long as one initializes with
for all . The initialization of is arbitrary. Another
important aspect is the global convergence of the algorithm
in the domain to the same solution of the algorithm in
the domain—this cannot be generally guaranteed when

has finite length. The problem of the convergence of a
certain function (when )
to the same solution of the function is a well-known
and investigated problem in the blind deconvolution literature
(see [22, chapter by Shalvi and Weinstein]). This convergence
cannot always be guaranteed for both functions. First of all,
observe that the procedure (15), (16) is a gradient-based search
to solve the maximization problem

(42)

subject to the constraint . In fact, the two steps in
(15) and (16) are equivalent to the gradient-based iteration

(43)

with . indicates the
gradient of the vector and we choose avery largestep size

. However, we have translated the maximization procedure
for over into a maximization for a certain
over , where

and we have used
Let us assume that is an extremum for , that is,

. It is then obviously true that such

that is also an extremum for because
.

The converse may not be true. That is, if we assume that
is an extremum for , it may not be true that

is an extremum for . In fact, we may have

if belongs to the

kernel of which is orthogonal to the subspace spanned by
, which means that can be far from the desired solution.
We investigate this last important issue. By the chain rule

we have

(44)

or, in vector form

(45)

Now multiply both sides of (44) by to obtain

(46)

because , the identity ma-
trix. It is then evident from (46) that if is an ex-

tremum for , that is, if , then

. Since is continuous with
respect to and , then we only need to require
that for a sufficiently small it is satisfied

(47)

to guarantee that is arbitrarily small, which implies

that there exists an extremum such that is
arbitrarily small. In other words, the extremum for
is arbitrarily close to the extremum for if there exists a
sufficiently small such that (47) is verified. Condition (47)
emphasizes the importance of selecting the rank order of the
low-rank filter carefully. The selection of a low value
for will alleviate the computational effort of the algorithm
but will make the algorithm prone to misconvergence, due to
(47).
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